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Abstract

We study the coherent propagation of an elastic wave in a two-dimensional continuous elastic medium filled with dislocation arrays randomly
distributed and oriented in space. This configuration reasonably mimics grain boundaries in polycrystals. Interest is in evaluating the plastic
contributions to the multiple scattering of waves in polycrystals that may superpose to other known scattering processes, like scattering due t
inhomogeneities of elastic properties among grains. Calculations are performed in a multiple scattering formalism, based on the derivation o
the so-called mass operator, in the approximation of weak scattering. We find that sound attenuation increases when the frequency decreas
atrend opposite to the usual behavior, suggesting that dislocations could sensibly modify the acoustic properties of materials at low frequenc
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction step is that an oscillating dislocation produces an oscillating
variation of the velocity field that corresponds to an outgoing
In recent paperg$l,2], the acoustic wave propagation scattered wave.
through dislocations has been investigated. Ultra-sound tech-  This basic mechanism being described by both an equation
nigues offer the possibility of non-destructive testing of mate- of motion for the dislocatiofi6] and an integral representa-
rials. Very recent visualizations showing the strong scattering tion of the scattered wave for a moving dislocat[@h, the
of an acoustic wave by dislocatiof8§ give furtherincentives  scattering properties can be theoretically studied. The scatter-
for studying related problems. ing of elastic waves by a single dislocation has been studied
One may think that the scattering is due to the local mod- in [1]. When many dislocations are present, as in real ma-
ification of the elastic properties in the vicinity of the de- terials, an effective medium approach can be derived from
fect, that is in the dislocation core. Actually, such a static a standard multiple scattering formalig&j. The goal is to
mechanism is not relevant since the dislocation core size isdetermine the modification of the properties of an incident
typically of few nanometers, much smaller than the micro- wave propagating through a random distribution of disloca-
to-millimeter wavelengths of typical ultrasonic waves. The tions, or, in other words, to determine the properties of the
scattering mechanism is rather a dynamical process that in-so-called coherent (or effective) wave.
volves two step$4,5]. The first step is that dislocations are This paper extends the work of ré2] to the case of the
not immobile but can move under the influence of an exter- multiple scattering process produced by a random distribu-
nal stress, here produced by the incident wave. The secondion of lines holding a linear density of edge dislocations.
Lines of dislocations provide a reasonable picture of low an-
* Corresponding author. Tel.: +33 1 40 79 4700; fax: +33 1 40 79 4468. dle grain boundaries, and are expected to give a qualitative
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are concerned. Waves propagating in a polycrystal can also be
scattered by variations of the bulk elastic properties from one
grain to the other. This mechanism, which has been studied
forrandomly oriented grains and generalized to more compli-
cated texturef8], will be ignored here. In the present paper,
we rather take explicitly into account the elastic properties of
grain boundaries. In order to analyze separately the contribu-
tion of interfaces to the scattering process, we will consider rig. 1. Grain boundary pictured by a liihe of lengthL with density, of

the bulk of the grains as an isotropic continuous medium.

2. Basic equations

gliding edge dislocations of Burgers vector

ing grain boundaries) in terms of an effective medium. The
averaging process over disorder realizations involves a priori
averages over the length®f the segments, over the disloca-

The interaction between a single dislocation and an elastictions densitiep, = 1/d held by each line, over the Burgers

wave, in a 2D geometry, has been describef?]rthrough

Eq. (2):
[VZ+k5+ (2 — 1)VV.]v = —VPv. (1)

Eq. (1) has a classical form: the left hand side term corre-

sponds to the usual wave equation for the time derivative

v of the elastic displacement, whose solutions are two in-
plane waves, a transverse wayewith velocity 8 = /u/p

and a longitudinal wavg, with velocitya = /(A + 2u)/p,
andy = a/B. (r, ) are the Larg’s constants andthe den-

vectorsbofthe N = p, L dislocations held by, and over the
positions and orientations of the segmerxs, @p) (Fig. 1.
The modified Green function is given by the Dyson equation:

(G)(K) = [6° (k) — =] %, 4)

whereGC is the disorder-free Green’s function ai¢k) the
so-called mass-operator. In the weak scattering (or weak dis-
order) limit, measured by a small parameteB(k) can be
expanded in power ef X(k) = 21(k) + Z2(k) + .. .. Inthe
present case, we need to compute at least the first two terms,

sity of the elastic medium. The right hand side term in EQ. pacause the imaginary part of the leading teZatk) van-
(1) describes the interaction between these two waves andghas These terms are given by

the dislocation (i.e. the scatterer) through the potentfal
The expression of ? for a gliding edge dislocation moving
along its in-plane Burgers vectbrhas been derived if2]
in a local basis @, t, n), whereb = bt. Defining the matrix

01
J=

10
afixed frame Q, e1, &) as Eq(2), whereX is the dislocation
position,mthe classical effective mass of edge dislocations,
Fpy = RgyJR—g, and with6g = (e?,\b) and R, the rotation
matrix of anglea.

, one can expreds” in a more tractable formin

)

where’ denotes the transpose. The potentiabrresponding
toaline distribution of dislocations on the lihavith a density
pp IS obtained by summing over the dislocations:

2
V) = Y00 B vsx— X) 'V F
(X)_mwz 6o (X ) |X 0o

b2
mao L
whereY = X, + X, with X, the origin point onL and X
oriented alongd. (Fig. 1).

3. The modified Green function

The multiple scattering formalism is based on the calcu-
lation of the modified Green functiofG) (k). The modified
Green function describes the elastic medium filled with scat-
terers randomly distributed (here, the segméntspresent-

T1(k) :n/ddee‘”"XV(x) gkx,

Xo(k)=n / dx dx’ dC e KXV (x)GO(x — X)V(x') e KX,

(®)

where n denotes the number density of scatterers and
where the integral overC corresponds to averages
over all relevant parameters. Her€ e p(b)db p(L)dL
plop) dopdX./V dbp/(27), where p(X) denotes the proba-
bility distribution function of the quantitx. In Eq. (5), we
have assumed that the scatterers are not spatially correlated.
The (complex) poles ofG)(k) give the wavenumbergk,

and Kg of the coherent waves susceptible to propagate in
the effective medium. Their real part is related to the index
of refraction whereas their imaginary part to the attenuation
length. In order to simplify the calculations, we adopt the fol-
lowing method. The modified Green'’s functiofi) (k) is ex-
pressed as a function ¢&) (k) [Eq. (6)], the modified Green
function in the local reference fram@( R e1, R¢ &) where

£ = (e, K). In this frame, we expedG) (k) to be diagonal
and to depend only on the modulkisf k.

(6)

Using the Dyson equatiofd), our task is to computéG) (k)
as

(G)(k) = Re (G)(k) R—s.

(G)(k) =[G (k) — £k L, @)
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with £ = $; + £, at second order in disorder strength, and 10*
with 10°

2 21 2 0 10
- k= —k
G = | VR L . ®) 10!

0 (k2 _ ké) 5; 10° e
After some calculationf9], we obtain 10
10
~ lun /Nb?\ ,[10 Py
Sak) = B0 027 Ve , :
1(k) o < - > 01 0
2.4 42 10?0‘2 ié‘l 160 161 10°

~ i /unN2 /ND*\ 14y Kg 2
s =55 (5) () 4 0k i

nkL) O Fig. 2. A, (bold line) andAg (thin line) vs.kg (L) (y = 1.4), for a distribu-

1 9) tion of lengthp(L) o §(L — (L)) (solid line), andp(L) = 1/(2(L)) (dashed

0 Ix(kL) line). The straight dashed lines are guides to the eye.

with I,(kL) = [ ”Eﬁii‘%’l‘fi?‘;k fa(60)F(L, 60, ¢) fora = 1, whose amplitude increases with increasing the wavelength

2, f1 = Sir2 200, f» = co# 200, F = coL 2¢f (koL 00, ¢) + 101"
y*sin? 2¢f (kgL 6o, ¢), and f(gL, 6o, £) = sinc?[(k sindo
—gsin¢)L/2). 4.2. Attenuation lengths

The attenuation length,, = 1/3(K,) corresponds to the
4. Characteristics of the coherent waves loss of energy due to scattering away from the forward direc-
tion. We obtain, for = o, 8

The wavenumberk,, andK g of the coherent longitudinal

. , 3294 4 m? ke
and transverse waves, respectively, are given by the poles ofp, = v R—] < 5 4> (12)
y~1(k), or equivalently by the poles af5) ~1(k), defined 1+y*nps \N*b*/ I(k:L)
in (6) and (7)and calculated above. with I, = I1, I = I (SeeFig. 2).
Increasing the wavelength makes the attenuation length
4.1. Index of refraction A4 p decrease, again an unusual behavior for waves propa-
gating in random media. Note the presence of a linear and a
We define the index of refraction ag = v,/ V, fora = quadratic regime, with a cross-over between both behaviors

a, B, whereV, = w/N(K,) andv = w/k, denote the phase  occurring at wavelengths of the order of the average grain
velocities, respectively, in the presence and in the absenceooundary length.

of scatterers. From above, we obtain tor o, # and with Finally, in the limitk.L < 1, the expressions of the re-
aw =1 ap = 2, fraction index and the attenuation length equal those found
a0 pwn | NB2 for a distribution of single dislocation, with total mas&:
ne=1 —( — (20) and Burgers vectdXb (see[2]).
4y? w? < m >

As observed for a distribution of isolated dislocati¢®s

e The effective phase velocity is larger than its value in 5. Concluding remarks

the absence of scatterers. Reversely, the group velocity The dispersion relation of an elastic medium filled with

is smaller. . : - ) :
. Lo . : dislocation arrays randomly distributed and oriented in space
e Theindex of refraction increases with increasing the wave- . . . .
length has been derived. This analysis was aimed to evaluate the

plastic contribution to the scattering of elastic waves propa-
The latter behavior is unusual: for static inhomogeneities, gating in a polycrystal. It has been found that the strength
scattering is expected to vanish at long wavelengths, and theof this scattering phenomenon increases when decreasing
index to decrease toward unity. As first observed by Nabarro frequency, a result that has to be contrasted with the usual
[5] and confirmed in our calculations, this result is due to the behavior observed when the primary source of scattering is
particular dynamical interaction between an elastic wave anddue to bulk anisotropy8]. Both effects may superpose in

a dislocation: the scattering process occurs because the mopolycrystals, and the plastic one could be important at low
tion of the dislocation is driven by the incident wave, motion frequency.
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