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We address the problem of an elastic wave coherently propagating through a two-
dimensional polycrystal. The main source of scattering is taken to be the interaction with
grain boundaries that are in turn modelled as line distribution of dislocations—a good
approximation for low angle grain boundaries. First, the scattering due to a single linear
array is worked out in detail in a Born approximation, both for longitudinal and
transverse polarization and allowing for mode conversion. Next, the polycrystal is
modelled as a continuum medium filled with such lines that are in turn assumed to be
randomly distributed. The properties of the coherent wave are worked out in a multiple
scattering formalism, with the calculation of a mass operator, the main technical
ingredient. Expansion of this operator to second-order in perturbation theory gives
expressions for the index of refraction and attenuation length. This work is motivated by
two sources of recent experiments: firstly, the experiments of Zhang et al. (Zhang, G.,
Simpson Jr, W. A., Vitek, J. M., Barnard, D. J., Tweed, L. J. & Foley J. 2004 J. Acoust.
Soc. Am. 116, 109-116.) suggesting that current understanding of wave propagation in
polycrystalline material fails to interpret experimental results; secondly, the experiments
of Zolotoyabko & Shilo who show that dislocations are potentially strong scatterers for
elastic waves.
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1. Introduction

The propagation of sound in polycrystals has long been an object of study (for a
review see, for instance, Thompson 2002). Individual grains within a polycrystal
are single crystals, each with its own orientation, separated by grain boundaries.
While the material within each grain is the same, the orientation of the crystal
axes is different and it is this contrast in anisotropy that is at the root of the way
elastic waves will behave in a polycrystal. Following the pioneer works of
Lifshitz & Parkhomovskii (1950), the general approach to study sound
propagation in polycrystals has been to consider a theory in which the elastic
constants of the grains fluctuate. Methods include multiple scattering (Stanke &
Kino 1984), use of a second-order Born approximation on an individual scatterer
(Hirsekorn 1982) and geometrical acoustics (Rokhlin et al. 1991). Recent
experiments of wave propagation in single phase polycrystalline material (Zhang
et al. 2004), however, appear to be quite at variance with current theoretical
modelling, thus suggesting a need to revisit the issue of sound elastic wave
propagation in polycrystals. At the same time, other experiments (Zolotoyabko
et al. 2001; Shilo & Zolotoyabko 2002, 2003) have illustrated that wave scattering
by dislocations can be significant.

Low angle grain boundaries are well described as arrays of aligned edge
dislocations (see figure 1). This is why we propose in this paper to address the
problem of wave scattering by dislocation segments, a problem that has been
disregarded before. To clearly isolate this effect, we do not include in our analysis
the scattering coming from the different elastic properties between grains. We
only consider the grain boundaries as interfaces able to be the sources of the
scattering, while the medium they limit is taken to be the same, namely
homogeneous and isotropic.

The interaction between an elastic wave and a dislocation was first analysed
by Eshelby (1949, 1953) and Nabarro (1951) by use of an electromagnetic
analogy. A different approach has been largely developed by Granato & Liicke
(Granato & Liicke 1956a,b, 1966, 1981; Liicke & Granato 1981) who model the
dislocation as a string driven by a scalar time-dependent stress. Eshelby &
Nabarro noted that the waves are scattered by a dislocation, because their
motion induced by the incoming wave generates the emission of a scattered wave.
Thus, a description of this mechanism involves two steps: the knowledge of the
law of motion of a dislocation in the presence of an incident wave, and a
representation for the elastic field generated by the moving dislocation. As an
integral representation for the velocity field generated by a moving dislocation
was derived from the Navier equations by Mura in 1963, the general framework
to obtain the equations for the motion of a dislocation in the presence of an
incident wave is much more recent (Lund 1988). This is probably why little
about the interaction between elastic waves and dislocations can be found in the
literature. Very recently, we have tackled this problem in a bi-dimensional
configuration. Firstly, we have considered the problem for the interaction
between a single dislocation and an elastic wave (Maurel et al. 2004a). Then, we
have studied the properties of a coherent wave (its refraction index and
attenuation length) propagating in a medium filled with randomly placed
dislocations (Maurel et al. 2004b), the motivation being to extend the ultrasonic
non-destructive evaluation for the detection of flaws and cracks to the ultrasonic
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(@ (b)

Figure 1. (a) Polycrystalline structure, (b) low angle (tilt) grain boundary and corresponding
Burgers vector.

non-destructive evaluation of dislocation ensembles, thus enabling a non-
intrusive probe for the study of plasticity.

In this paper, we focus on the two-dimensional multiple scattering process
generated by a random distribution of lines that are composed of a line
distribution of edge dislocations within an otherwise homogeneous isotropic
medium. This is our cartoon of a polycrystal. The paper is organized as follows:
in §2, we present the basic relations that lead to an homogeneous wave equation
for the in-plane velocity associated with wave displacement,

V2 + & + (v* —1)VV.]u(z) = VP (z)v(z). (1.1)

Equation (1.1) has a classical form: the left-hand side term corresponds to the
usual wave equation whose solutions are two in-plane waves: a transverse wave
with a wavevector of modulus kg, and a longitudinal wave of modulus k, = kg/.
The right-hand side term describes the interaction between the waves and the
grain boundary (i.e. the scatterer) through the potential VCB that has a matrix
structure. Then, equation (1.1) is used to determine the scattering functions for a
single grain boundary. For in-plane polarized waves, four scattering functions
have to be determined. Sections 3 and 4 treat the coherent propagation of waves
through multiple grain boundaries (let us remind that these multiple grain
boundaries are our cartoon of a polycrystal). In §3, the multiple scattering
formalism is presented. Because of the linearity of equation (1.1), the potential V
for a grain boundary ensemble, each grain boundary being indexed by 4, is simply
deduced from the potential VEB for a single grain boundary through V = $7,V¢B:,
The main task here is to derive the so-called modified, or averaged, Green’s
function that is the impulse response of the effective medium, defined as the
average of the media over all realizations of grain boundary ensembles. In §4, the
characteristics of the coherent wave, in terms of velocity and attenuation, are
derived and discussed.
We report in the electronic supplementary material some technical algebra.

2. Scattering mechanism

We recall in this section the main results obtained in Maurel et al. (2004a) to
obtain the potential VP for a scatterer composed of a single dislocation. The

potential VE® for a dislocation ensemble is VEP = fEdXipb(Xi)VD’? corresponding
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to a line distribution of dislocations with a line density p,(X;). In the following,
we assume this density to be constant [p,(X;) = p;], i.e. we assume the grain
boundary is formed of a uniform distribution of dislocations. Note that we could
consider VB as a discrete sum over point dislocations (i.e. a line density made of
delta functions); this latter choice being less tractable mathematically.

We consider a two-dimensional space with the fixed basis (O, ey, ey).
Dislocations are gliding edge dislocations, i.e. their Burgers vectors b are in-
plane and their motion, described by the dislocation position X, occurs along the
Burgers vector b. The basis attached to the dislocation is (¢, n), with b= bt and
n along the in-plane perpendicular direction. The two types of in-plane waves
interacting with an edge dislocation are: a longitudinal wave with compressional

velocity a= \/(A+2u)/p and a transverse wave with shear velocity 8= +/u/p,
where (4, u) are Lamé’s constants and p the density of the elastic medium. We
define ¥ =/, as in equation (1.1).

(a) Potential for a single dislocation

In this section, we want to obtain the potential for a single dislocation. Firstly,
equation (2.1) is the starting relation to do that. It corresponds to the integral
representation for the particle velocity v = % (w is the displacement field in the
elastic medium and the dot denotes the time derivative) produced by a moving
dislocation located at position X. Secondly, equation (2.3) is the equation of
motion of a gliding edge dislocation in the presence of an incident wave.

The integral representation

. d
(@) = e [ A0 (1) 5 Gl (0= X, =), (2.1)
J
is derived from the wave equation
62
pf&i(m’ t) - ’I.Ll(fl?, t) =0, (22)

c.v ] —
ikt 0z; O,
with boundary conditions

aul
[ut]S(t) i |:Cljkl 8:rk nj:| s O’

where S(t) is a time-dependent line abutting at the dislocation point (in two-
dimensional) and the brackets denote the difference above and below S(t).
A derivation of the integral representation has been performed in Mura (1963)
and is detailed in electronic supplementary material-1. Similar derivation can be
found in Lund (2002) for a vortex loop configuration. In equation (2.1), the
indexes j, k,n... take the value 1 or 2, and €, = ¢€,,3 (the usual completely
antisymmetric tensor). G, (, t) is the elastic Green function in two dimensions.

In the local basis (¢, n) introduced earlier, the equation of motion for a gliding
edge dislocation reads

where 15 is the stress tensor expressed in the local basis (¢,m) taken at the
position X(t) of the dislocation and where m is the effective mass of an edge
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dislocation
I 14+t 5, 6

=— b°In — 24
= g et (24)
with 6 and ¢, the long- and short-distance cut-off lengths, respectively.

This equation, valid in the subsonic case (dislocation velocity small compared
with «, 8), corresponds to an edge dislocation with mass m submitted to the usual
Peach-Koehler force (Peach & Koehler 1950). For the derivation of this
equation, see for instance Lund (1988).

Equations (2.1) and (2.3) can be combined into the following wave equation
written in the frequency domain (w denotes the frequency and ks = w /)

[V + k5 + (v —1)VV.]Jo(z) =V (z)v(z), (2.5)

where the right-hand side of this equation is a two-component vector ‘potential’
given by

n

VP (z)v(z) = (St(w)> _ b

d
=—— (0,9 +dv,
Sn(:l}) P ( t t )|X<a

mew
in the local basis (¢,n) and with d,vx denoting (dv/da)(X) (9, represents the
space derivative along the tangent ¢, not to be confused with a time derivative
(dot symbol)). A detailed derivation of this equation can be found in electronic
supplementary material-2.

)6(:1:—X), (2.6)

t

0 1 -D
Introducing the matrix J= Lo ), one can express the components V= of

the operator in the local basis as

<5t(w>> :_VD(x)<vt($) ) with V' (z) = “bz JVo(z— X))V x,

$7L<$) UTL(:B) mw

where V = ((gt ) and @EX is the operator (acting on any function f(x)) defined as
n

€|TX flx) = (gfff((;(()) > . Superscript T denotes the transpose.

Expressing all quantities in the basis (ej, e,), the operator V¥ finally reads
ub?
mw?

VP (x) =

Ryg,JVo(z — X)V|x Ry, J, (2.7)

with 0, = (e, b) and R, =
have used R,J=JR_,.

— cosa —sina
sina cosa

) the rotation matrix of angle a. We

(b) ‘Potential’ for a grain boundary

A grain boundary is represented by a segment L of length L, containing
N = p, L dislocations (figure 2). The N dislocations have the same orientation,
perpendicular to £ and the same Burgers vectors b. Possible interactions
between dislocations are not considered, except in the term of mass, as
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Figure 2. Grain boundary represented as a line £, of length L and containing a density p; of gliding
edge dislocations with Burgers vector b. X, denotes the centre of £ and Y the position along L.

(t,n) is the basis associated with £, making an angle 6, = (e, b).

discussed in §3c. The potential VOB associated with the grain boundary is
obtained by summing over dislocations

b?
VOB (g) = F prdXR%JV(S(a:— Y)Vy Ry J. (2.8)

mw2

where Y= X, + X, with X_. an origin point on £ and X oriented along L.

(¢) Scattering functions of a single grain boundary

In this section, we derive the scattering functions for a single grain boundary
in the first Born approximation. X, is set equal to 0 without loss of generality
(Y=X).

Within the first Born approximation, the integral representation for the
solution of equation (2.5) is

v'(x) = Jdm’GO(m—m’,w)VGB(m’)vmc(m’), (2.9)

where V? has been replaced by the grain boundary potential V&B introduced in
equation (2.8), and v has been replaced in the right-hand side term by v (the
velocity displacement of the incident wave). This assumes weak scattering since
the total velocity v= v"°+ v° is assumed to be equal to v at leading order (the
wave scattered by the rest of the grain boundary on one dislocation is neglected).

In the case of polarized waves, one has to distinguish the amplitudes A, and
Ag of the longitudinal and transverse incident waves, respectively,

vinC(:B) = A,e etfemt 4 Aﬁez olksnr (2.10)

The incident wave propagates along the e;-axis, so that the velocity of the
longitudinal wave is along e; and the velocity of the transverse wave is along
e, (figure 3). In the following, vy (x) [vi(x)] denotes the solution of equations
(2.9) and (2.10) with Ag=0 (A, =0, respectively).

Because equation (2.9) is linear, the full solution is simply the superposition
v*= v}, + v;. We present in the following the detailed derivation of the
scattered wave v, (x). The derivation of v () is performed in a similar way.

We first express the components of v,(x) (respectively, wv3(x)) in
cylindrical components: the first component corresponds to the projection of
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faa’faﬁ

Figure 3. Scattering of an incident wave with longitudinal and transverse polarizations (A4, and Ag,
respectively) by a grain boundary £. At an observation angle § and at large distances z from £, the
scattered field is composed of a longitudinal wave (with scattering functions f,, and f,z because of
mode conversion) and of a transverse wave (with scattering functions fs, and fg).

vy (x) along the position vector z, with § = (€, z) and the second component is

the azimuthal component.N(I]n this local basis, we use two remarlgzoxble properties:
(i) the Green function G (z,w), defined by GY(z,w)= Ry 4Gu(z, )Ry, is
diagonal and independent of # (z denotes the magnitude of the position vector z);
(ii) the polar components of v* are directly related to the scattering functions
faa(0) and f5,(0). In these notations, f,;,(¢) is the a-component of the scattered
wave, for a given incident b-wave. That is, in the limit kx> 1,

ikyx ikyx

[§]

faa(a)— faﬁ(e) °

v, Ve Vs ¢ Na

] =4, 0 , Tesp. = Ag 0 . (2.11)
Uz,n el U,(Si,n et
fﬁa(a) fﬁﬂ(a) \/}

VT

The scattering functions f;, and f,s quantify mode conversions, i.e. the
transverse wave generated from scattering of a longitudinal incident wave, and
vice versa.

Using equation (2.8) and setting Az =0, A, =1, the integral representation
(2.9) reads

2

2 _—
vy(x) = py:i)b de’LdX Go(m—m’,w)RMOJV'(S(m’—X)V&RQ(,OJel ehen(2.12)

In the integral above, we have
V&RMOJel elfett = ikaelTRMUJel ehdt = ik sin 26, et (2.13)

and the integral over z’ is
T
<Jdm'G0(:c—:v',w)RZHUJvlé(w'—X)> =VTR200JG0(£B—X, w). (2.14)
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We now use, for > X (z, X denote the magnitude of the position vectors z, X ),
the asymptotic form of Green’s function in two-dimensional free space,

eikm[z+X sin(6y—0)]

i/ Vhkav?
7—00 2\/% eikﬁ[:v-‘rX sin(6y—0)]
0 D

Vs
We have used X = XRj e,;: with X.=0,X is along the direction of the

dislocation line, perpendicular to the Burgers vector (b is along Ry e;).

In general, V=10,(Rye;)+ (1/2)d4(Rype;). At leading order in z, the terms
coming from the derivation with respect to # can be neglected, so that we

formally write V= R,d,e; that involves the leading order terms. We get for the
cylindrical components

v () vl (@)
, (%
(@A@) *(@A@)

im/4

0

Clz—X,w)— Ry. (2.15)

| @eikm[z+X sin(ﬁgfe)]sin 2(0 — 00)
sin 200kaJ dx elkaXl Y
L

\/Eéeikﬁ[ﬁx sin(ﬂoﬂ?)]cos 2(0 _ 00)
( sin 2(0 —6,)

_pRb e

mw® 2./2xz]

where we have used Ry _¢JRye; =

) cos 2(60—¥6,)
Vi (T) ,uNb2 e/
= sm 204k

). We finally obtain

S mw22/

V()
k.
Qe*msinc{m/z[sm(eo —6) —sin 6] }sin 2(6 —6,)
Y
/Ege¥sTsine{ kg L/2[sin(0, — 0) —sin 6, /y]}cos 2(6 —0,)
(2.16)
The case of the transverse incident wave can be treated using the same route as
in §2a: In equation (2.12), the term V&Rwudel elhutl = —ik, sin 20, "1 has to
be replaced by V"}(R% Jey et = ikg cos 26, e®X . We deduce
U%f<m) ,uNb2 elm/4
= cos 20,k
<'v%n(m) mw? 2v/2m 0%
%elk“lsin(}{k&L/ﬂsin(ﬁo —6) — sin 6y }sin 2(6 —6,)
/kge sine[ks L/2(sin(8, — 6) —sin 6)]cos 2(6 —6,)
(2.17)
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Figure 4. Scattering functions of a grain boundary (in plain lines). The direction of the Burgers
vector is indicated by the arrow, the incident wave has the direction §=0.

The scattering functions are then written by identifying equations (2.16) and
(2.17) with equation (2.11),

uNB? K2 : )
Jua(0) = o msin%‘o sin2(0 — 0, ) sinc[k, L/2(sin(f, — 0) —sin b, )]e'™,

fual0) = oks®
e mw? 2/ 2my?

NO kghy!? :
K 5 ;—\/Q_.COS 20 sin 2(6 — 6, sinc[k, L/2(sin (6, — 6) — y sin f,)]e™*,
mao i

'LLNbQ k3/2 '
fos(0) = —Wfﬁcos 20 cos2(0 — 0) sinc[kg L/2(sin(6, — #) —sin fo)]e™*.

sin26 cos2(0 — 6 ) sinc[kg L/2(sin(6, — #) —sin 00/7)]ei”/4,

faﬁ(a) =

7

(2.18)

The polar plots of the scattering functions are shown in figure 4. As expected,
for wavelengths large compared to L, the scattering functions tend to those
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obtained for a single dislocation with Burgers vector B = Nb and mass M = Nm
(see Maurel et al. 2004a).

3. The multiple scattering mechanism for the modified Green function

(a) Principle of the calculation

The multiple scattering formalism we use is based on the calculation of the
modified Green function (G)(k) with k the wavevector that comes from the
Fourier transform of G(z). The modified Green function describes the elastic
medium filled with scatterers randomly distributed (here, the segments £
representing grain boundaries) in terms of an effective medium. The
averaging process over disorder realizations involves averages over the
lengths L of the segments, over the dislocations densities p,=1/d held by
each segment (d denotes the distance between two dislocations), over the
Burgers vectors b of the N = p,L dislocations held by the segments, and over
the positions and orientations of the segments (X, 6,) (figure 2). The
modified Green function is given by the Dyson equation (see, for instance,
Sheng 1995),

@)k = [6" (k) =3 (k)] (31)

where G° is the free space Green function and (k) the so-called mass
operator. When the properties of the coherent wave differ little from the
waves in the homogeneous medium, 2(k) can be perturbatively expanded in
powers of a small parameter e (for a discussion/definition of €, see §3c¢):
3(k)=Z2,(k)+ Z5(k)+---. In the present case, we need to compute at least
the first two terms, because the imaginary part of the leading term =,(k)
vanishes. These terms are given by

= (k) =n[dzdC e *FoVEB(g)elk ™,
(3.2)

/

S,(k) =n [dzde’ dC e *2VOB ()G (z— 2 )VOB(2)e ™,

where n denotes the number density of scatterers (grain boundaries) per unit
area and the integral over C corresponds to averages over all relevant
parameters. Here, dC = p(b)dbp(L)dLp(p;)dp,(dX./V)(db,/27), where p(X)
denotes the probability distribution function of the quantity X (in the
following, we note (X) = [dXXp(X)). In equation (3.2), we have assumed that
the scatterers are not spatially correlated.

The (complex) poles of (G)(k) give the wavenumbers K, and Kj; of the
coherent waves that can propagate in the effective medium. Their real part is
related to the index of refraction whereas their imaginary part is related to the
attenuation length.

We report in §3b the derivation of 2(k) at order 1. The derivation at order 2,
that involves similar calculations, is detailed in electronic supplementary
material-3.

Proc. R. Soc. A (2006)
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(b) Derivation of the mass operator
(i) Order 1
We start from the expression (3.2) for Z;(k),

= (k) = anzzz p(0)p(L)p(dp,)dbdLd bd—?% e mEyOB gt T (3.3)

Using equation (2.8), we get

W m V

deX ¢ F "Ry JVO(z — Y)V|y Rog J 7.

By using V|Yelk“”—ikTeik'Y and integrating by part [dx e k2ys(z—Y)
=ik e * Y we obtain

2
3, (k) =—n%<%>J (L)L d‘% dX. J dXRyg, Jk" KRy, J

W %
(3.4)
L 2
= (2 b Jd—HOR% JE" KRy, J.
W m 21 0 0

We now focus on the matrix Ry JkaR20OJ whose average over 6, has to be
taken. With k=FkR:e; (i.e. £ = (el, k)), and using P, = efe; and P, = e} e,
=JP,J, it is easy to see that RQ(;UJk kRqy J = K R(26,-2)P2R_(26,—z)- Changing the
varlable 0y — 6y —&/2, we obtain

n /| Nb
Zl(k) = —QZQ)Q < m >l{,'2 JdHORQHOPQRQHO
Lo (3.5)

_ <Nb >kz2
2a) m 0 1

For a single grain boundary, the total Burgers vector is B = Nb and the total
mass is M = Nm. Expression (3.5) is actually the same as obtained for a random
distribution of isolated dislocations of Burgers vector B and mass M (Maurel

et al. 2004b),
1 un /B 1 0

This result shows that there is no effect of the line distribution of dislocations
along the segments L at this order: grain boundaries are seen as spatially
uncorrelated (‘fat’) single dislocations.

Proc. R. Soc. A (2006)
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(ii) Order 2

The calculation of =,(k) is similar to that presented earlier and is detailed in
the electronic supplementary material-3. We obtain

i oumy2 /NP L+t k:§ 9 1, (kL) 0
m.(h) =15 (%) (o ) o e P LY

with

B 1
(L) (1 +v*)
X {cos®2Lf (ky L, kL, 09, ) + v*sin®2¢f (ks L, kL, 6,, )},

I, (kL) Jp(L) L dL d6, d¢ sin*26,

1
(D7) (1 + )
X {cos®2¢f (k, L, kL, 09, ) + v'sin®2¢f (ks L, kL, 6, )},

L(kL) = J p(L)L* dL df, dZ cos*26,

and
f(qL, kL, 0,,%) = sinc®[(k sin 6, — ¢ sin {)L/2],

where sinc(z) = sin(xz)/z. It is easy to see that I,—; » goes to unity as kL tends to
zero. Hence, the limit of expression (3.7) at long wavelengths is the same as that
obtained for a random distribution of single dislocations of Burgers vector B and

mass M,
i /un\2/ B 1+74k§210
(k) = 16 (a)Q) <M2> yioon g 0 1)/ (38)
Using
2012 _ 12
Y (k _k(x) 0
G'(k) =R R, (3.9)
0 (K —k3)

the modified Green function finally reads

(W—k) 0 n/B\ ,[1 0
<G>1(k):R§[<Y 0 k2—k2>+%%<%>k (0 1)
8

' 2 / N2 42 L(kL 0
S N (I | et
16 \w m Ytoon 0  L(kL) '

(¢) Discussion

Let us comment on expression (3.10). For the sake of clarity, we take all grain
boundaries with the same number of dislocations, so that N*= (N)*= (N?).
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Relation (2.4) can be written as m = pb*/¢, where e =1/In(6/d,) is the small
parameter in multiple scattering by single dislocations. We have B*>/M = Ne/p
and we define

, N
7920
kﬁ

€ (3.11)

so that we can write, for k= ke; (i.e. £=0),

(@7 (k) =G" (k)
1 (1 0\ i 144" (h(kL) 0
§N6(0 1) 16 4t <N6)< 0 IQ(kL)>]‘ (3.12)

The weak scattering limit corresponds to
(i) € finite, that is no vanishing value of kL., with L. =1//n;
(ii) Ne<k 1, with e=1/In(6/d,).

+ K

The first condition introduces a cut-off length L. for the ultrasonic wavelength
that can be used. As the interaction strength between the wave and a dislocation
increases with increasing wavelength, this condition corresponds to a non-
divergence of the scattering strength. This condition introduces a characteristic
length that is relevant in the forthcoming expressions of the refraction indices
(4.2) and of the attenuation lengths (4.4). Note that in a recent experiment
(Zolotoyabko et al. 2001; Shilo & Zolotoyabko 2002, 2003), high-frequency
ultrasonic waves have been used in a LiNbOj3 crystal, corresponding to kgL, =10,
thus fulfilling condition (i).

Condition (ii) involves properties of the medium itself. For an isolated
dislocation, the long cut-off length ¢ is given by the size of the sample and the
short cut-off length 6, = b. In grain boundaries, the upper cut-off length ¢ can be
chosen as the distance d between dislocations (Shockley & Read 1949). For a tilt
boundary, L, N and b are linked through L= Nd, with d= /6, and 6, the (small)
misorientation angle. We thus obtain the condition

(L/b)

Ne = 0, < 1.
(/) 0

With L>> b, this condition gives a restriction on the angle 6, of the grain
boundary.

4. Characteristics of the coherent waves

The wavenumbers K, and Kj of the coherent longitudinal and transverse waves,
respectively, are given by the poles of (G)(k). In equation (3.10), the first
diagonal term of (G)7'(k) gives the longitudinal wave (directed along k);
the second diagonal term yields the transverse wave, in the direction
perpendicular to k. In the weak scattering approximation, K, is expected to be
close to k, (and Kjg close to kg). In equation (3.10), we thus replace I, (kL) by
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I (kL) (and Iy(kL) by I(ksL)). Thus, the coherent wavenumbers read

[ 1 un / Nb* 1+~% fun ? N2bt\ K2
Ky=k|l——5—F(—) Fi | —= — — I (kL) |,
4v° w m 32y W m n

r 2
1 un | Nb? 1+ (un N2b*\ k3

(4.1)

At first-order, this expression reduces to the results obtained following Foldy’s
approach (see §4c¢).
(a) Index of refraction and attenuation length

We define the index of refraction as n, =a/V, (respectively, ng =8/Vjp),
where V,=Re(w/K,) denote the phase velocities in the presence of grain
boundaries (recall that a and 8 are the phase velocities in the absence of grain
boundaries). From equation (4.1), we obtain

1 1 un / NV
n = —_—— —_—
* A4v? w? \ m /[’

py = 1L [NV
o 402\ m /[

As observed for a distribution of isolated dislocations (Maurel et al. 2004b):

(4.2)

(i) the effective phase velocity is larger than its value in the absence of
scatterers. The group velocity is however smaller;
(ii) the index of refraction decreases with increasing wavelength.

As first observed by Nabarro (1951) and confirmed in our calculations, this result is
due to the particular interaction between an elastic wave and a dislocation (e.g. in
equation (2.3)). The scattering waves actually occur from the motion of the
dislocation driven by the incident wave. The equation of motion (Lund 1988) shows
that the amplitude of dislocation motion increases with increasing wavelengths,
which also increases the scattered energy. Of course, no divergence of the index
occurs since the difference of n, g to unity is of order Nee'. With the condition that €’
remains finite, values of wavelengths have an upper limit given by the cut-off length
L.. By considering identical grain boundaries, equation (4.2) reads

_ 1 unB? _ 1 Ne
Ny =1l—"—s—r—a=1-—"—"—7
4y Mw 4y (ky L)
: (4.3)
1 unB 1 1 Ne
ng=1—-———=1—= .
T AM A (kL)

(b) Attenuation lengths

The attenuation length A4, is given by the imaginary part of the wavenumber:
A, =1/Im(K,). It corresponds to the loss of coherence due to scattering away
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Figure 5. Variations of A,, 4 (with y=1.4) as a function of ks(L). The bold lines represent 4,,
with a grain boundary length distribution given by p(L) e 6(L—(L)) (solid line) and p(L)=
1/(2(L)) (dashed line). The thin lines represent /g, with the same notations. The straight dashed
lines are guides to the eye.

from the forward direction. From equation (4.1), we obtain
32y ol < m? > ks 32 1 kL

o

Ty e \ NP6 T(kL) T 14yt (Ne) L(keD)

= 32yt gt/ om? ks 32yt 1 KL,
ST Ty  \ N2/ L(ksL) 1+ y* (Ne)® L(ksL)

(4.4)

where the symbol ‘~’ can be replaced by an equality if all grain boundaries are
identical. The attenuation lengths are plotted in figure 5 as a function of
wavenumber. Note the presence of a linear and a quadratic regime, with a cross-
over between both behaviours occurring at wavelengths of the order of the
average grain boundary length. The linear regime coincides with the results
obtained with single dislocations (Maurel et al. 2004b) with the total Burgers
vector B and the total mass M. Increasing the wavelength decreases the
attenuation length 4, g, an unusual behaviour for waves propagating in random
media. Conversely, waves do not attenuate at very small wavelengths (as the
refraction index tends to one), a limit where the medium looks to be disorder-free.
Recall that the expressions in equation (4.4) are not valid for large wavenumbers
because of the condition that € remains finite.

Note also that, in the calculation presented here, the internal damping has
been neglected in the equation of motion. Sources of dislocation damping can be
multiple (Nabarro 1987), and are important at low frequencies. In spite of this
limitation, the predictions discussed earlier could be further tested experimen-
tally in a frequency range where damping forces are still small.

(¢) Remark on the Foldy approach

An adaptation of the Foldy approach (Foldy 1945) can be found in Maurel
et al. (2004b) for two-dimensional polarized waves. It was found, for an ensemble
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of isolated dislocations, that (fy5)c(0)= (fsa)c(0)=0 (in that case, we had
C = (b,6y)). This property, that is the averaged cross-coupled scattered waves
vanish, is also verified for the present case. Indeed, it can be seen from equation
(2.18) that the average over 6, makes (f, ) c(0) and (fz,)c(6) (here, we have
C=(b,L,py, X.,0)) vanish at §=0.

Thus, the effective wavenumber K,, with a = «, 6, can be written as a function
of the averaged scattering functions

27 —im
Ka = ka +n k_<faa>0(0)e /4‘ (45)

This relation leads to the same value for the modified wavenumber as in equation
(4.1) at first-order. This is because the scattering functions have been calculated
in the first Born approximation.

5. Concluding remarks

We have derived the dispersion relation of a two-dimensional continuous elastic
medium filled with gliding edge dislocation arrays randomly distributed and
oriented in space. It has been found that sound attenuation increases with
wavelength, an effect probably due to the two-dimensional nature of the problem.

The present analysis is aimed to evaluate the plastic contribution to the
multiple scattering of elastic waves that propagate through polycrystals and it is
the first time, to the best of our knowledge, that the structure at the grain
boundary is considered. Most of the studies have considered the variations
between grains in the elastic constants, and mainly the change in anisotropy, as
the source of scattering. Both effects may superpose in polycrystals, so including
possible contribution of the dislocations could be helpful to obtain a better
modelling of sound propagation in polycrystals.

This work was supported by the Consejo Nacional de Ciencia y Tecnologia (CONACYT, Mexico)
grant number 40867-F, by the CNRS/CONICYT in the framework of a French/Chilean
collaboration on ‘Propagation of wave in continuous disordered media’ and by FONDAP grant
no. 11980002.
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